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Wave propagation over a rectangular trench 
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An analysis is presented for the propagation of water waves past a rectangular sub- 
marine trench. Two-dimensional, linearized potential flow is assumed. The fluid domain 
is divided into two regions along the mouth of the trench. Solutions in each region are 
expressed in terms of the unknown normal derivative of the potential function along 
this common boundary with the final solution obtained by matching. Reflection and 
transmission coefficients are found for various submarine geometries. The result shows 
that, for aparticularflow configuration, thereexists an infinite number of discrete wave 
frequencies a t  which waves are completely transmitted. The validity of the solution in 
the infinite constant-water-depth region is shown by comparing with the results using 
the boundary integral method for given velocity distributions along the mouth of the 
trench. The accuracy of the matching procedure is also demonstrated through the 
results of the boundary integral technique. I n  addition, laboratory experiments were 
performed and are compared with the theory for two of the cases considered. 

1. Introduction 
A class of problems involving the propagation of water waves in a fluid of variable 

depth is one in which the depth is constant except for variations over a finite interval. 
Interest in these problems is largely due to the phenomena associated with the passage 
of waves over submarine trenches in the ocean and wave propagation across naviga- 
tional channels, where changes in water depth are commonly the case. A general 
analysis of wave propagation over variable-depth geometries is given by Kreisel ( 1949). 
Kreisel’s approach involves mapping the domain of the fluid into a rectangular strip, 
whereby the problem of solving for the velocity potential is reduced to a linear integral 
equation which can be solved by iteration for suitable geometries. A common method 
employed in the solution of problems involving changes in water depth is that  of 
matching the solution along a geometrical boundary that separates the regions of 
different depths. Such an approach is found in the work of Bartholomeusz (1958) and 
Miles (1967). It has also been found by Newman (1965 a, b )  and Black, Mei & Bray 
(1971) that for wave propagation over submarine obstacles there exists an infinite set 
of wavelengths such t,hat the incident wave is totally transmitted. 

Lassiter (1972) solved for the transmission and reflection coefficients in the case of 
monochromatic plane progressive surface waves over a rectangular submarine trench 
where the water depths before and after the trench are constant but not necessarily 
equal. Lassiter formulated the problem in terms of complementary variational integrals 
and solved for the velocity potential by matching the solution along vertical lines 
before and after the trench. 
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FIGURE 1. Definition sketch of the trench with regions of consideration. 

In this present study, the problem considered is two-dimensional motion of linear 
periodic water waves over a rectangular submarine trench where the water depths 
before and after the trench are equal and constant. By drawing a horizontal line, the 
authors have separated the domain into two subregions, namely an infinite rectangular 
region of constant depth and a finite rectangular region representing the trench itself. 

An analytic solution for each region is then found explicitly in terms of an unknown 
velocity distribution along the trench/constant-depth boundary. By superimposing a 
linear periodic incident wave of specified frequency in the infinite constant depth 
region, the final solution is obtained by matching the solutions in each subregion along 
the common boundary. 

2. The boundary-value problem 
Let (x, y) be a Cartesian co-ordinate system with y = 0 coinciding with the imperme- 

able boundary of the constant-depthregion as shown in the definition sketch in figure 1. 
Assuming a steady-state solution for the velocity potential in the form 

@(x, y; t )  = $(x, y)e-iut, (1) 

the potential function $(x, y) must satisfy Laplace's equation throughout the fluid 
domain and the following boundary conditions : 

2 = 0  on y = O  and x < O ,  y = O  and x > 1 ,  
aY 

y = - d  and 0 .c x < I ;  

% = O  on x = O  and - d < y < O ,  x = l  and - d < y < O .  
ax 

In (1) )  u represents the circular frequency, Bn-lwave period; i = J - 1. 
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In  order to solve for $(x, y) in an efficient manner, the fluid domain is divided into 
two regions, I and I1 (as shown in figure 1) ,  by the common boundary r which is defined 

y = o ,  O < X < l .  
by 

The strategy used herein is to solve for $(x, y) in each respective region in terms of the 
along the common boundary r. Thus, by matching the solutions in unknown 

each region a t  r, one is able to obtain the final solution. 

3. Region I solution 

boundary conditions as Q, and the following additional conditions: 
The scattered velocity potential in region I, $I, satisfies the same homogeneous 

on O < x < l ;  

_ -  "I- +ik$, on ~ - + + a ,  O < y <  h; 
ax - 

(3) 

where q(x) represents the unknown velocity distribution along the trench/constant- 
depth boundary, and k is the outgoing wavenumber at infinity. 

The solution for $I is determined using the Fourier transform as 

where q(k) is the transform of the still unknown functionq(x) represented approximately 

where the interval 0 c x c 1 has been partitioned into N segments of equal length, Qj 
is the average value of q(x) in the j t h  subinterval ( j  = 1,2$. . . , N ) ,  and H ( x  - 6 )  is the 
Heaviside step function. 

A Fourier transform of (6) and substitution into (5) yields 

To compute the integral defined by Ij, contour integration has been used; the integral 
I j  has simple poles a t  0 ,  ik, (n  = 1 , 2 , .  . .), where k, and k, are defined by the 
following relationships : 

k, and 

(T2 _ -  - k, tanh (k, h) and 
- a2 = -k,,tan(k,h). 

9 
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In  order to obtain an outgoing wave solution (4) from the trench, we specify our 
inversion path to lie above the pole a t  - k,  and below the pole at  + k,. For such a path, 
the solution for $I can be described as follows: 

( l ) I f x > x j f o r a l l j ,  

(3) If x > xi-1 and z < xi for some j, 

In (7)-( 9) the functions S, and S, are defined by 

4. Region II solution 

boundaries and the following condition: 
Again, the solution dII in region I1 satisfies the no-flow condition at the solid 

(10) -- '$11 - q(x) on y = 0, o < x < Z. 
aY 
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There exists a constraint on q(x)  (due to the conservation of mass in region 11): 

N 

2 Q j = O .  
i = 1  

This condition must be also applied to region I. 

subject to the boundary conditions (2) and (10) is 
Via the technique of separation of variables, the solution for the potential $11 

where a. is a constant which is determined by the matching procedure described in 
the next section, and a, (n 2 1)  is given by 

a, = J nnsinh (nn-dll) * q(x). cos (nnx/l)  dx. 

5. Superposition and matching of solutions 

velocity potential can be specified as 
For a periodic incident wave travelling in the positive x direction in region I, the 

agi cosh k, y 
(T cosh k,h @in(x, y; t )  = &(x, y) e-iut = - ~ exp [i(k,x - d)]. 

Defining 2j( j = 1,2, . . . , N )  as the midpoint of the j t h  subintervalof r, we may in turn 
define the vectors {&} and {$I} by 

$1;) = (15) 

+p = 0) (j = 1,2, ..., N ) .  (16) 

agi 
0) = - sech k, h exp [ikrgj] ( j  = 1,2, . . . , N ) ,  c 

and 

Using (9), it  can be seen that = [HI {Q},  where H is symmetric and 

&”=&. 3 (j= 1 , 2  ,..., N ) .  

Defining the column vector {$11} by $f] = $II(2j, 0 ) ,  (6), (12), and (13) give 

{$Id = { P o }  + [&I {Q} ,  117) 

where {PO}NX1 is a vector in which each member is (the same) arbitrary constant and 
[XI is a real and symmetric N x N matrix. 

Owing to the continuity of velocity potential along the common boundary I’ we have 

{$in} + ($1) = {$Id- (18) 

Substituting (15)-(17) into (18) we obtain N equations with N +  1 unknowns (Ql, 
Q 2 , .  . . , QN and Po). However, (1 1)  must again beimplementedfor region I, providing us 
with an additional equation. This system of linear equations is then solved numerically 
for the vector {Q}.  Thus, the originally unknown function q(x) introduced in (3) is now 
solved as a discrete vector {Q}.  
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Kt K t  Kt 
N , P  (h /A = 0.05) (h/A = 0.10) (h/A = 0.15) 

595 0.7669 0,9471 0.9678 
10,.10 0.7712 0.97 17 0.9928 
15,15 0.7719 0.9761 0.9953 
30,30 0.7724 0.9793 0.9967 
50,50 0.7725 0.9802 0.9971 

TABLE 1. Values of K t  computed for different values of N ,  
(h = 4", d = 26&", 1 = 429"). 

Kt 
(h/h = 0.20) 

0.9982 
1*0000 
0.9999 
0.9997 
0.9997 

P and h/h 

6.  Analysis of wave amplitude 
Since the values Qj have been found, the velocity potential in the entire domain is 

completely solved. In particular, the values of #I and #in a t  the surface can now be 
computed using (7)-(9) and (14). The wave amplitude at  the water surface is given by 
linear theory to be 

at any value of x. 
All of the theoretical results presented in figures 3-7 are computed when the trench 

length is divided into N = 30 equal segments and P = 30 terms are taken in the Fourier 
series ( 12). 

In  table 1, the accuracy of the computation of the transmission coefficient Kt is 
shown for various values of N and P at different values of h/A for the case h = 4", 
d = 2saff,  I = 42s". 8 

It can be seen from the above table that N = P = 30 is of sufficient accuracy for a 
wide range of h/A for this particular geometric configuration, and similar results were 
found for all of the cases presented. 

The solution for the scattered wave potential $I given by (7)-(9) has also been 
verified independently by the boundary integral method, which is discussed by Lee 
(1971) and has been applied successfully in solving Laplace's equation for the velocity 
potential in two dimensions by Raichlen & Lee (1978). 

Considering region I only, suppose that a vertical displacement [(x) e-iot is specified 
on y = 0, 0 < x < 1. Then the derivative is 

q(x) = -icr&), 0 < x < 1. 

Using (7)-(9), the wave amplitude 7 can be computed at any value of x due to the 
bottom displacement ((x) eci"t. 

With respect to the boundary integral method, a finite region of sufficient length 
from the disturbance must be taken to accurately represent the boundary conditions 
a t  infinity and a sufficiently large number of boundary elements must be chosen. 

In  table 2 a comparison is made of the quantity 7 m/& between the region I solution 
given by (7) and that obtained by the boundary integral method a t  various values of 
h/A m; 7 is the wave amplitude at  x+ + co, (,, is the maximum of t ( x )  on 0 < x < 1, 
and h is the length of the outgoing wave a t  infinity. In  this table, N = 30 segments 
covering the boundary of the trench mouth are usedin the region I solution. A distance 
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714) l.r, - 
A ,  6 0  E O  

h - 
(present method) (B.I.M.) 

0.05 0.396 0,380 
0.10 0.689 0.693 
0.15 0.809 0.797 
0.20 0,744 0.740 

TABLE 2. Comparison of the value of qm/lo between the boundary integral method and present 
method (Eo/h = 0.1, E(z) = to, h = 8", I = 21Q."). 

of 3.0feet was taken from the bottom disturbance and 120 boundary elements were 
employed in the entire boundary treated by boundary integral method. 

Table 2 shows a comparison of 7 .Jto for t o /h  = 0.1 a t  various values of hlh for the 
configuration h = 8", 1 = 214". The displacement t ( x )  is given by a uniform displace- 
ment t(x) = to which is representative of a piston-like bottom motion on 0 < x < 1. 

The fact that the results from the boundary integral method become less accurate 
for extreme values of hlh  m, should be taken into account. In  the case of shallow water 
waves, the finite region employed becomes too small compared with the wavelength, 
and for high-frequency waves the velocity potential varies too much between boundary 
elements for accurate computation, if the total number of boundary elements remains 
the same. Nevertheless, the comparison shown in table 2 verifies the solution given by 
(7).  Further, the accuracy of the matching procedure was verified by using the boun- 
dary integral method to solve for the solution in region I1 in lieu of (1  2) & (1  3).  Seventy- 
five boundary elements were distributed along the boundary of region I1 and the 
solution in terms of Qi ( j = 1, 2, . . . , N )  was matched with the region I solution as per 
the matching equation (18). The result plotted in figure 6 shows excellent agreement 
with the result of the present method. 

7. Experimental equipment and procedure 
A series of laboratory experiments has been conducted in a wave tank 12 inches wide, 

48 feet long and 18 inches deep. A paddle-type wave generator is placed a t  one end of 
the tank to generate the desired wave a t  a specified wave period. The wave period is 
controlled by a variable-speed motor control. A wave filter is placed in front of the 
wave paddle while a wave absorber is located a t  the end of the wave tank. At the 
central section of the wave tank a special trench section is installed. The trench section 
extends 264" below the bottom of the wave tank to rest on the laboratory floor. The 
maximum trench length is 85 inches. Four different trench lengths can be obtained 
through the partitions installed, namely Zlg", 42#", 63#", 85". The depth in the trench 
section can also be varied by placing a false bottom a t  various heights. 

The wave amplitude is measured by means of resistant-type wave gauges. The wave 
records are recorded using a Hewlett Packard four-channel oscillograph. 

Wave amplitudes were measured in the region 2 feet to  6 feet behind the trench 
section. Wave-amplitude envelopes are obtained first without the effect of the trench 
(by covering the trench section completely) in order to determine the incident wave 
amplitude. The wave envelopes are then obtained with the trench a t  the desired length 
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FIGURE 2. Comparison of reflection coefficient with results of Lassiter (1972) (h = 4", d = 4", 
I = 20"). -, present results; ----, ---*-.- , Lassiter's results. 

and depth at  the same region behind the trench section in order to ascertain the wave 
amplitude after passing over the trench section. The wave envelopes a t  the region 
between the wave generator and the location of the trench are not measured. 

8. Presentation and discussion of results 
The effect of the trench on the propagation of waves can be demonstrated most easily 

by the transmission and reflection characteristics. In  all figures, the transmission and 
reflection coefficients, Kt and K,, are shown as functions of the relative wavelength. 
The ordinate is the ratio of the transmitted wave amplitude divided by the incident 
wave amplitude, while the abscissa is the ratio of the water depth (h)  in region I 
divided by the incident wavelength ( A ) .  The wavelength h is computed from the 
dispersion relationship, h = (gT2/2n) tanh (27rh/h), where T is the incident wave 
period. 

A comparison of the reflection coefficient obtained by the present method along with 
the work of Lassiter (1972) is shown in figure 2. As can be seen, the results of the pro- 
posed method compare well with those obtained by the variational approach employed 
by Lassiter. It is also shown by Lassiter that the two curves he obtained represent 
upper and lower bound solutions to the variational method used. Such a definite 
conclusion concerning upper and lower bounds cannot be reached by the present 
method. However, the present solution scheme provides an explicit analytic solution 
as given in (7)  to (9) once the values of Qj are obtained by matching. 

Figures 3-7 show the effect on the wave transmission and reflection as a function of 
trench length, trench depth and water depth. From figure 3 the incident waves are 
almost fully transmitted for h/A > 0.18. At h/A = 0.09, the transmission coefficient 
reaches a minimum at approximately 0.89. The corresponding values of .!/A for h/A 
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FIQURE 3. Transmission coefficient as a function of relative wavelength 
(h = 4", d = 2 6 y ,  1 = 218"). 

= 0.18, 0.09 are: 0.95 and 0.475.Itappearsthatfor arelativelyshorttrenchlength,ina 
rather deep trench, the maximum reduction of transmitted wave occurs as 1/A 
approaches 0.5. As the wave period is decreased to where l/h approaches 1, the effect 
on wave transmission due to the trench is negligible. This can be explained in the 
following: 

For such a relatively short trench length, as l /h  approaches 1,  the vertical velocity of 
water particles at the trench mouth nearly satisfies the requirement of ( l l ) ,  i.e. the 
conservation of mass condition for regionII. Therefore, the minimum effect is ex- 
perienced by the propagating waves and the transmission coefficient is almost equal 
to 1. For the case of llh approaching 0.5 the incident wave must undergo a drastic 
adjustment in order to satisfy (1  1) .  Therefore, the transmission coefficient is reduced 
to a minimum for this particular wave frequency. 

Although this explanation may be considered helpful it cannot explain the loca- 
tion of each peak and trough in the curves of transmission coefficient presented in this 
paper. One reason is that the effect of the trench is rather complicated as regions I and 
I1 are dynamically interacting. Also, the value of the wavelength A is based on the 
water depth in region I (h). Hence the true wavelength at  the trench region differs from 
A, so that the propagating wave does not instantly adjust to the new depth as it passes 
over the trench. As a result, one is not certain which h should be used in order to 
adequately explain the effect of the trench. 

Figure 4 shows the computed reflection coefficient as a function of the relative wave- 
length for the same range of h/h shown in figure 3. The reflection coefficient, K,, is 
defined as the reflected wave amplitude divided by incident wave amplitude. As 
expected, the maximum reflected wave occurs at h/h = 0.09 where the transmitted 
wave is a minimum. As this is an inviscid theory, one can check the result to see whether 
K$ + K,2 = 1 can be satisfied (where K, is the reflection coefficient, Kt the transmission 
coefficient). For the range of hlh,  it is checked that such a relation holds true; thereby 
further increasing the validity of the theoretical result. 
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FIGURE 4. Reflection coefficient as a function of relative wavelength 
(h = 4", d = 26&", 1 = 216"). 

As the trench length increases, the effect of the trench on transmission and reflection 
characteristics becomes more interesting. This is shown in figure 5.  The trench length 
for this case is twice the length of that in figures 3 and 4. It is seen for the range of hlh 
presented, there are four wave periods at  which waves are fully transmitted ( K ,  = 1, 
K ,  = 0). The reduction in transmission coefficient or increase in reflection coefficient is 
more pronounced at hlh = 0.056. Again, it  is seen that the effect of the trench on 
transmission or reflection coefficients for higher values of h/h is decreasingly smaller. 
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FIGURE 6. Transmission coefficient as a function of relative wavelength ( h  = 4", d = 26&", 
I = 63Q"). -, present theoretical results ; , experimental results ; . , results using boundary 
integral method. 

This is reasonable because, for higher values of h/h, the water depth is relatively 
deeper. 

In  figure 5 experimental data on the transmission coefficient has been included for 
comparison. It is seen that the experimental data in general confirms the trend pre- 
dicted by the theoretical analysis. Also apparent from the experimental data is that 
there exists an oscillation of data points about the theoretical curve. This could be due 
to the effect of the finite length of the wave tank and that the wave absorbers placed a t  
both ends of the wave tank cannot eliminate the wave reflection completely from the 
tank ends. 

Results on wave transmission over a longer trench length is shown in figure 6. The 
trench length for this case is three times that shown in figure 3 with other dimensions 
held constant. In  the range of 0 < h/h < 0.25, there are six different wave periods a t  
which waves are fully transmitted. The results indicate that the trench does exert a 
greater influence on wave transmission on wave characteristics in that the transmission 
coefficient at h/h = 0.042 is only about 0.70. Experimental data are also included in 
figure 6. It is seen that the experimental data in general tend to confirm the theoretical 
prediction. However, due to experimental errors and the unavoidable wave reflections 
from both ends of the wave tank, the experimental data show considerable scattering 
as evident in the figure. Results obtained by using boundary integral method for 
region I1 solution matching with the solution from region I is also included for com- 
parison. It is seen that the two theoretical results agree very well. 

To show the effect of the water depth in the trench, the depth of the trench in figure 7 
is changed to d = 13i inches (one-halfof thatpresented in figure 6) .  Asmaybe expected 
the values of h/h corresponding to peaks and troughs in the response curve are slightly 
different. While there is an increase in the wave transmission for the first trough, the 
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FIGURE 7. Transmission coefficient as a function of relative wavelength 
(h = 4", d = 13v, I = 639"). 

wave transmission for the second trough is somewhat decreased. This follows because a 
decrease in the value of d means that the trench would not be so deep as to fall in the 
deep-water wave range completely. 

9. Concluding remarks 
The analytic method outlined for analysing the effect of a rectangular trench on the 

propagation of periodic incident waves has been shown to be quite effective as illus- 
trated by comparison with other solution techniques and with experiments. From the 
results on wave transmission and reflection, it is seen that there exists an infinite 
number of wave periods at which waves are fully transmitted. An attempt has been 
made to explain this phenomenon physically. The effect of the trench on wave trans- 
mission (or reflection) is progressively smaller for higher wave frequencies (the larger 
values of h/h) .  
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